A measurement of *Ξ[−]* **polarization in inclusive production by** *Σ[−]* **of 340 GeV/c in C and Cu targets**

The WA89 Collaboration

M.I. Adamovich^{8,†}, Yu.A. Alexandrov^{8,a}, S.P. Baranov^{8,a}, D. Barberis³, M. Beck⁵, C. Bérat⁴, W. Beusch², M. Boss⁶, S. Brons^{5,b}, W. Brückner⁵, M. Buénerd⁴, Ch. Busch⁶, Ch. Büscher⁵, F. Charignon⁴, J. Chauvin⁴, E.A. Chudakov^{6,c}, U. Dersch⁵, F. Dropmann⁵, J. Engelfried^{6,d}, F. Faller^{6,e}, A. Fournier⁴, S.G. Gerassimov^{6,8,f}, M. Godbersen⁵, P. Grafström², Th. Haller⁵, M. Heidrich⁵, E. Hubbard⁵, R.B. Hurst³, K. Königsmann^{5,g}, I. Konorov^{5,8,f}, N. Keller⁶, K. Martens^{6,h}, Ph. Martin⁴, S. Masciocchi^{5,i}, R. Michaels^{5,c}, U. Müller⁷, H. Neeb⁵, D. Newbold¹, C. Newsom^j, S. Paul^{5,f}, J. Pochodzalla^{5,k} B. Povh⁵, R. Ransome^l, Z. Ren⁵, M. Rey-Campagnolle^{4,m}, G. Rosner^{7,n}, L. Rossi³, H. Rudolph⁷, L. Schmitt^{7,f}, H.-W. Siebert⁶, A. Simon^{6,g}, V.J. Smith^{1,o}, O. Thilmann^{6,p}, A. Trombini⁵, E. Vesin⁴, B. Volkemer⁷, K. Vorwalter⁵, Th. Walcher⁷, G. Wälder⁶, R. Werding⁵, E. Wittmann⁵, M.V. Zavertyaev^{8,q,a}

- ¹ Univ. of Bristol, Bristol BS8 1TL, UK
- 2 CERN, 1211 Genève 23, Switzerland
- ³ Dipt. di Fisica and INFN, 16146 Genova, Italy
- ⁴ Inst. de Sciences Nucléaires, Univ. Grenoble, 38026 Grenoble, France
- 5 Max-Planck-Inst. für Kernphysik, 69029 Heidelberg, Germany
- ⁶ Physikalisches Institut, Univ. Heidelberg, 69120 Heidelberg, Germany^r
- 7 Inst. für Kernphysik, Univ. Mainz, 55099 Mainz, Germany^r
- ⁸ P.N. Lebedev Physics Inst., 117924, Moscow, Russia

Received: 17 Febraury 2004 / Revised version: 9 June 2004 / Published online: 23 July 2004 – \odot Springer-Verlag / Società Italiana di Fisica 2004

Abstract. We have measured the polarization of Ξ^- hyperons produced inclusively by a Σ^- beam of 340 GeV/c momentum in nuclear targets. From a sample of 880000 identified Ξ^- decays, polarizations were determined in the range $0 < x_F < 0.9$ and $p_t \le 1.6$ GeV/c. The polarization w.r.t. the production normal is negative for $x_F \geq 0.3$. At fixed values of x_F , its magnitude increases with p_t to maximum values which reach about 20% at large x_F .

- ^c Now at Thomas Jefferson Lab, Newport News, VA 23606, USA
- $^{\rm d}$ Now at Instituto de Fisica, Universidad Autonoma de San Luis Potosi, S.L.P. 78240 Mexico
- e Now at Fraunhofer Inst. für Solar Energiesysteme, 79100 Freiburg, Germany.
- f Now at Physik Dept. E18, TU München, 85747 Garching, Germany
- ^g Now at Fakultät für Physik, Univ. Freiburg, Germany
^h Now at Physics Dept. Univ. of Utah Salt Lake City. Ut
- ^h Now at Physics Dept., Univ. of Utah, Salt Lake City, Utah, USA
- Now at Max-Planck-Institut für Physik, München, Germany
- ^j University of Iowa, Iowa City, IA 52242, USA

1 Introduction

It is well known that hyperons produced in high-energy hadronic reactions are polarized transverse to the production plane. While details of this process still are not understood, the existing data show differences based on whether the strange quark content of the produced hyperon was created from the sea or whether a strange quark was trans-

^a supported by Deutsche Forschungsgemeinschaft, contract number DFG 436 RUS 113/465/0-2(R), and Russian Foundation for Basic Research under contract number RFFI 00-02- 04018

^b Now at TRIUMF, Vancouver, B.C., Canada V6T 2A3

^k Now at Inst. für Kernphysik, Univ. Mainz, Germany
¹ Butgers University, Piscataway, NJ 08854, USA

^l Rutgers University, Piscataway, NJ 08854, USA

m permanent address: CERN, 1211 Genève 23, Switzerland

ⁿ Now at Dept. of Physics and Astronomy, Univ. of Glasgow, Glasgow G128QQ, UK

^o supported by the UK PPARC

^p Now at Dept. of Radiation Physics, Lund Univ., 22185 Lund, Sweden

^q Now at Max-Planck-Inst. für Kernphysik, Heidelberg, Germany

supported by the Bundesministerium für Bildung, Wissenschaft, Forschung und Technologie, Germany, under contract numbers 05 5HD15I, 06 HD524I and 06 MZ5265

[†] deceased

ferred from the beam projectile. It is therefore desirable to have polarization data not only for produced hyperons of different strangeness, but also for beam projectiles of different strangeness. The bulk of the existing polarization data comes from inclusive Λ production, mostly in proton beam experiments, but there exist also data from neutron, π^- and K[−] beams. Data on polarization in Σ , Ξ and Ω^- production again come mainly from proton beam experiments, but Ξ^- and Ω^- polarization has also been measured in a neutral beam containing neutrons, Λ and Ξ^0 . For reviews of the experimental and theoretical situation see for instance [1–5].

Further insights into the role of the valence quark content of the beam particle may arise from experiments which use high-intensity beams of Σ^- . We present here the results of a polarization study based on a sample of 880000 identified $\Xi^- \to \Lambda \pi^-$ decays produced by a Σ^- beam of 340 GeV/c mean momentum in copper and carbon targets. These data were recorded in 1993 and 1994 in the CERN hyperon beam experiment WA89. Results on Λ polarizations based on the same data have already been published [6]. In a previous study of A, \overline{A} , Σ^+ and Ξ^- polarizations based on a smaller sample recorded in 1991 in the same experiment [7] we found negative \mathcal{Z}^- polarizations with magnitudes up to 30% at large p_t .

Previous measurements of the polarization of Ξ[−] and \mathcal{Z}^0 produced inclusively in proton beams of 400 and 800 GeV/c momentum [8–10] showed negative Ξ^- polarization, increasing in magnitude with p_t up to $p_t = 1 \frac{GeV}{c}$ with a plateau of $|P| \approx 0.15$ at higher p_t values, with no significant difference between Ξ^- and Ξ^0 and similar to the behaviour of Λ polarization. In contrast, Ξ^- produced in an unpolarized neutral beam mainly by \mathcal{Z}^0 showed polarizations compatible with zero at a level of 1% [11].

There are no quantitative predictions of Ξ^- polarization in inclusive production by Σ^- . The fragmentation/recombination model of DeGrand and Miettinen [12] predicts that the sign of the polarization should be negative as in Λ production by protons.

2 Hyperon beam and experimental apparatus

The hyperon beam and the apparatus are described in our previous publication on Λ polarization [6], therefore only a short description is given here.

The hyperon beam was derived from an external proton beam of the CERN-SPS at 450 GeV/c momentum, which hit a Be target. A magnetic channel selected negatively charged secondaries emerging from this target at production angles of less than 1 mrad. This ensured that the hyperons in the secondary beam had a negligible polarization. The mean beam momentum was 345 GeV/c and 330 GeV/c in the beam periods 1993 and 1994, respectively, and the momentum spread was $\sigma(p)/p \approx 9\%.$

The secondary beam was directed onto the experiment target 16m downstream. There the beam consisted of π^- , K^- , Σ^- and Ξ^- in the ratio 2.3 : 0.025 : 1 : 0.013. Typically, about $1.8 \cdot 10^5$ Σ^- and $4.2 \cdot 10^5$ π^- were delivered to the target during one SPS-spill of 1.5 sec duration. A transition radiation detector (TRD) allowed π^- to be suppressed at the trigger level. A detailed description of the hyperon beam can be found in [13].

The experiment target consisted of one copper and three carbon blocks arranged in a row along the beam, with thicknesses corresponding to 0.026 and three times 0.0083 interaction lengths, respectively, with the copper block positioned upstream of the carbon blocks. The tracks of the incoming beam particle and of the charged particles produced in the target blocks were measured in microstrip detectors. The momenta of the incoming beam particles, however, could not be measured individually.

The experiment target was positioned 14m upstream of the centre of the Omega spectrometer magnet [14] so that a field-free decay region of 10m length was provided for hyperon and K_S decays. The Omega magnet provided a field integral of 7.5 Tm. Tracks of charged particles were measured inside the magnet and in the field-free regions immediately upstream and downstream by MWPCs and drift chambers; the momentum resolution achieved was $\sigma(p)/p^2 \approx 10^{-4} \; (\text{GeV}/c)^{-1}.$

A ring-imaging Cherenkov detector, an electromagnetic calorimeter and a hadron calorimeter were located downstream of the spectrometer, but these components were not used in this analysis.

The main trigger selected about 25% of all interactions. Correlations between hits in different detectors were used to increase the fraction of events with high-momentum particles, thus reducing background from low-momentum pions in the beam. The results presented in this article are based on 200 million events recorded in 1993 and 1994.

3 Selection of *Ξ[−]* **decays**

The requirements on the identification of the Ξ^- production vertex were the same as for Λ production: Each accepted event had to have a single incoming beam track and an interaction vertex containing at least two outgoing charged tracks, all tracks being reconstructed in the microstrip counters around the experiment target. The beam track had to intercept the production vertex at a distance of less than 500 μ m, to suppress interactions of neutrons and Λ from Σ^- and Ξ^- decays upstream of the target. To suppress interactions of particles scattered from the collimator walls, the position/direction correlation for beam particles coming directly from the proton target had to be fulfilled.

The identification of $\Lambda \to p\pi^-$ decays from the measured p and π^- tracks was straightforward and is described in [6]. The effective ($p\pi^-$) mass had to be within \pm 10 MeV/c^2 of the Λ mass.

 Ξ^- candidates then were selected by using any additional negative track with measured momentum to reconstruct the Ξ^- direction and decay vertex. The reconstructed Λ line-of-flight and the π^- track had to have a distance of $< 5 \, mm$ at the reconstructed Ξ^- decay vertex. Furthermore it was required that the reconstructed Ξ^-

Fig. 1. Δm_{Ξ} , the difference between the effective $\Lambda \pi^-$ effective mass and the Ξ^- mass. Event numbers are per 0.5 MeV/ c^2 . Left: $0 < x_F < 0.2$, right: $0.7 < x_F < 0.9$

track agreed in angle and position with a track observed in the microstrip detectors downstream of the target. The agreement was quantified in a quality factor $Q_{\mathcal{Z}}$ based on the position and direction differences between the reconstructed track and the observed track. Requiring this factor to be less than 2.5 rejected about 5% of all genuine Ξ^- .

Figure 1 shows the distributions of the effective $(\Lambda \pi^{-})$ mass for Ξ^- candidates with $0 < x_F < 0.2$ (left) and $0.7 <$ $x_F < 0.9$ (right). The r.m.s. of the Ξ^- mass peaks can be parametrized as $\sigma_m^2 = a^2 + (b \cdot p_A)^2$, with the contribution from multiple scattering being $a = 2.2 \text{ MeV}/c^2$ and the contribution from coordinate measurement errors being $b \cdot p_A = 1.5 \text{ MeV}/c^2$ at $p_A = 100 \text{ GeV}/c$. Ξ^- candidates had to have a $\Lambda \pi^-$ effective mass within $\pm 2 \sigma_m$ of the Ξ^- mass. At low p_t , the background/signal ratio within this signal window increases with x_F from 0.10 to 0.15 and at high p_t from 0.01 to 0.06. After subtraction of a linear background taken from "side windows" inside \pm 24 MeV/c², a sample of 880,000 $\Xi^ \to \Lambda \pi^-$ decays remained in the range $0 < x_F < 0.9$. Ξ^- candidates with $x_F > 0.9$ were rejected because of the presence of Ξ^- in the beam.

4 Polarization analysis

The polarizations were measured w.r.t. the direction of the production normal $\hat{n} \propto \hat{p}_{\text{beam}} \times \hat{p}_{\Xi}$, using the relation $f(cos\theta_{\underline{A}}^*) \propto 1+A\cdot cos\theta_{\underline{A}}^*$, where $A = P_{\Xi}\cdot \alpha_{\Xi}$ is the product of the Ξ^- polarization and decay parameter and ϑ^* is the angle between the production normal and the direction of the daughter Λ in the Ξ^- -CMS. $\alpha_{\Xi} = -0.458$ is the $\Xi^$ decay parameter [15]. The beam particle direction \hat{p}_{beam} was measured individually.

We used a coordinate system with the symmetry axis of the experiment as the x-direction. The beam particle directions coincided with the x-axis to within 2 mrad. The y-axis pointed horizontally to the left, looking downstream,

Table 1. Polarization results I. The statistics of the ^Ξ[−] signal is after background subtraction. p_t is in units of GeV/c

sample	Ξ^-	sample	mean	mean	polarization	
no.	signal	bgrd.	x_F	p_t	$[\%]$	$\chi^2_{\rm sectors}$
$\mathbf{1}$	15386	1634	0.09	0.13	-2.4 ± 3.8	$2.5\,$
$\overline{2}$	38198	1728	0.09	0.31	-0.2 ± 2.8	2.2
3	43212	1300	0.09	0.50	-0.8 ± 2.7	1.6
$\overline{4}$	35962	737	0.09	0.70	-5.2 ± 2.8	1.5
$\overline{5}$	24292	393	0.09	0.89	-11.1 ± 3.1	2.3
$\overline{6}$	14087	200	0.10	1.09	-3.6 ± 3.8	0.4
$\overline{7}$	13818	141	0.10	1.43	-6.8 ± 3.8	$0.5\,$
8	16126	1483	0.20	0.13	-5.0 ± 3.7	0.3
9	40039	1682	0.20	0.31	-2.2 ± 2.8	1.7
10	45385	1497	0.20	0.50	-0.4 ± 2.7	0.1
11	34737	891	0.20	0.69	-2.6 ± 2.9	0.2
12	22872	487	0.20	0.89	-2.9 ± 3.3	0.2
13	13277	239	0.20	1.09	$4.6 + 3.9$	0.6
14	15593	195	0.20	1.44	-8.1 ± 3.7	6.9
15	13783	1403	0.30	0.13	$-1.9 + 4.0$	0.4
16	34450	1468	0.30	0.31	-2.9 ± 2.9	0.9
17	40498	1388	0.30	0.50	-2.3 ± 2.8	1.7
18	32521	957	0.30	0.69	-6.5 ± 2.9	$1.6\,$
19	20260	495	0.30	0.89	-11.5 ± 3.3	3.6
20	10981	259	0.30	1.09	-7.6 ± 4.2	3.0
21	11088	222	0.30	1.44	-13.6 ± 4.2	0.1
22	11232	1299	0.40	0.13	$1.2 + 4.4$	0.5
23	26588	1236	0.40	0.31	-1.2 ± 3.1	4.7
24	31252	1227	0.40	0.50	-4.2 ± 3.0	0.9
25	25500	844	0.40	0.69	-6.4 ± 3.1	7.7
26	16199	521	0.40	0.89	-16.3 ± 3.6	0.1
27	8628	264	0.40	1.09	-14.7 ± 4.6	1.0
28	7695	200	0.40	1.42	-15.2 ± 4.9	0.3

and the z-axis pointed vertically upwards. In this geometry, the production normal was confined to the y-z plane and had an azimuth $\varphi_n = \varphi_{\varXi} + 90^\circ$.

The polarizations were determined in 7x7 bins of x_F and p_t , as listed in Tables 1 and 2. "Feynman-x" x_F is defined as $x_F = 2p_{\ell}^{CM}/\sqrt{s}$, where \sqrt{s} is the invariant mass of the (beam - target nucleon) system and p_{ℓ}^{CM} is the Ξ[−] momentum in beam particle direction in the (beam target nucleon) CMS. p_t is the Ξ^- momentum transverse to the beam particle direction.

4.1 Bias cancelling

Biases resulting from unrecognized apparatus asymmetries are the main cause for worry in any polarization measurement. For instance, the Omega magnet bent positively/negatively charged particles to the left/right, thereby introducing a strong acceptance bias in favour of π^- emission to the left. If not properly taken into account, this acceptance bias would translate into a positive polariza-

sample	\varXi^-	sample	mean	mean	polarization	
no.	signal	bgrd.	x_F	p_t	$[\%]$	$\overline{2}$ $\chi_{\rm sectors}$
29	8243	1052	0.50	0.13	$0.3 + 5.0$	2.4
30	19521	964	0.50	0.31	$0.6 + 3.4$	0.1
31	22986	1037	0.50	0.50	-0.2 ± 3.3	0.9
32	19053	788	0.50	0.69	-9.3 ± 3.5	5.1
33	12021	471	0.50	0.89	-14.6 ± 4.1	2.6
34	6409	206	0.50	1.09	$-6.8{\pm}5.2$	7.4
35	5412	215	0.50	1.41	-17.8 ± 5.7	4.4
36	5827	753	0.60	0.13	$3.6 + 5.9$	5.5
37	13236	777	0.60	0.31	$3.8 + 3.9$	3.4
38	15151	842	0.60	0.50	-1.3 ± 3.8	4.2
39	12708	677	0.60	0.69	$-5.7{\pm}4.0$	1.8
40	8018	361	0.60	0.89	-9.8 ± 4.7	4.6
41	4022	207	0.60	1.09	-27.2 ± 6.4	3.1
42	3393	179	0.60	1.41	-17.0 ± 7.1	0.1
43	6954	1048	0.75	0.13	$7.2 + 5.4$	0.3
44	14871	1089	0.74	0.30	$8.6 + 3.8$	0.3
45	15590	1067	0.74	0.50	-4.2 ± 3.8	0.6
46	12166	745	0.74	0.69	$1.5 + 4.1$	4.3
47	7155	441	0.74	0.89	$-5.6{\pm}5.1$	$1.3\,$
48	3602	250	0.73	1.09	-21.0 ± 6.8	0.7
49	2669	169	0.73	1.40	-17.1 ± 7.9	0.8

Table 2. Polarization results II

tion bias for Ξ^- emitted upwards and a corresponding negative polarization bias for Ξ [−] emitted downwards.

In order to cancel apparatus biases, we adopted the following procedure: to determine the polarization in a given interval of x_F and p_t we subdivided that x_F / p_t sample into subsamples corresponding to 12 sectors of 30◦ in φ_{Ξ} . In each sector of φ_{Ξ} , the polarization was determined by calculating the asymmetry $a(\cos \vartheta)=(n(\cos \vartheta)$ $n(-\cos \vartheta)$ / $(n(\cos \vartheta) + n(-\cos \vartheta))$ in 10 bins of 0 < $\cos \vartheta < +1$ and then determining A from a fit to $a(\cos \vartheta) =$ $A \cdot \cos \vartheta$. To be bias-free, this method does not require the acceptance and reconstruction efficiency ϵ to be constant, but only $\epsilon(cos \theta_p^*) = \epsilon(-cos \theta_p^*)$. The polarizations determined in each sector then were averaged to obtain bias cancellation. This method is explained in detail in [6]. As a check for the reliability of the bias cancelling, we averaged the polarizations in three subsamples of four φ_{Ξ} sectors each, sample A comprising Ξ^- azimuths inside $\pm 30^0$ to the vertical, sample B comprising Ξ^- azimuths inside $\pm 15^0$ to the diagonals and sample C comprising Ξ^- azimuths inside $\pm 30^0$ to the horizontal. If, for instance, the large left/right acceptance bias resulting from the horizontal bending of the tracks was not fully cancelled, we would expect the polarizations measured in sample A to differ systematically from the polarizations in samples B and C. Figure 2 shows the distributions of $(\text{pol}_i - \text{pol}_{\text{all}})/\sigma_i$, where $i = A, B, C$. pol_i is the polarization measured for subsample i in a given x_F / p_t bin, σ_i is its statistical error and pol_{all} is the polarization averaged over subsamples A, B and C. Thus each plot contains 49 entries for the 49 different x_F / p_t

Fig. 2. Deviations of the polarizations measured in sector subsamples A, B and C, respectively, from the polarization averaged over all sectors. The deviations are normalized to their statistical errors. The azimuthal ranges of samples A,B and C are indicated in the corresponding figures

Fig. 3. Distribution of χ^2_{sector} . There are no overflows. The dashed curve is the χ^2 distribution for 2 d o f dashed curve is the χ^2 distribution for 2 d.o.f.

bins. The mean values of the distributions are -0.09 ± 0.12 , $+0.13\pm0.12$ and -0.06 ± 0.11 for A, B and C, respectively, and the observed r.m.s. values of the distributions, 0.84, 0.87 and 0.77 are in agreement with what we would expect from purely statistical fluctuations, viz. $\sigma = \sqrt{2/3} = 0.82$. To further investigate the small differences between the polarizations in A, B and C, we studied the distribution of

$$
\chi^2_{\rm sectors} = \sum_i (\mathrm{pol}_i - \mathrm{pol}_{\rm all})^2/\sigma_i^2
$$

which is shown in Fig. 3. χ^2_{sectors} is also listed in Tables 1 and 2. This distribution again is in good agreement with what we would expect from purely statistical fluctuations, its mean value is 2.1±0.3.

4.2 Search for systematic errors

As mentioned above, a cut was made on Q_{Ξ} , the quality factor describing the agreement in angle and position between a track reconstructed in the microstrip detectors downstream of the target and the Ξ[−] track reconstructed

Fig. 4. High $Q_{\Xi}/\text{low } Q_{\Xi}$ comparison: The left-hand plot shows the distribution Δ pol $/\sigma$ for the 16 x_F / p_t samples. There are no overflows. The right-hand plot shows Δ pol in % vs x_F . For each value of x_F , four points are given corresponding to p_t $= 0.19$ (solid) and 0.45, 0.73, 1.15 (open) from left to right, respectively

from the Ξ^- decay cascade. In a search for possible biases arising from this cut, each x_F / p_t sample was split by a cut on $Q_{\mathcal{Z}}$ into two subsamples with equal statistics. The number of x_F / p_t samples was reduced to 4x4 to increase the sensitivity to possible effects of this cut. Figure 4 shows on the left the distribution of $\Delta \text{pol} = \text{pol}_{\text{low}} - \text{pol}_{\text{high}}$, normalized to the corresponding statistical errors. The r.m.s. of this distribution is 0.82 and its mean value is 0.06 ± 0.21 , in good agreement with the assumption of purely statistical fluctuations. The plot on the right shows Δ pol as a function of x_F . This plot might indicate a bias of 0.01 to 0.02 depending on x_F . We therefore added quadratically a systematic uncertainty of ± 0.02 to the statistical errors of the polarization measurements.

We have also split the x_F / p_t samples into subsamples of equal size with the beam direction to the right/left or up/down resp., and for long/short Ξ^- decay lengths. Comparison of these subsamples revealed no systematic differences at a level comparable to the systematic error already added to the statistical errors.

4.3 Beam contaminations

In the following, we investigate possible effects of beam contaminations on our results.

12% of the beam particles accepted in the trigger are fast π^- , which have the same momentum and angular distributions as the Σ^- and were not rejected by the TRD. The cross sections for inclusive Ξ^- production by π^- and by Σ^- have been measured simultaneously in our experiment [16]. Their ratio $r_{\pi\Sigma} = \sigma(\pi^- \to \Xi^-)/\sigma(\Sigma^- \to \Xi^-)$ decreases rapidly with x_F as shown in Table 3. Even in our lowest x_F bin, $0 < x_F < 0.2$, we expect that about 6% only of our Ξ^- sample have been produced by π^- . Since Ξ^- produced by π^- can be expected to be essentially unpolarized as observed in Λ production by π^- [17] we would only have to multiply our measured polarizations by a factor $1/(1 - 0.12 \cdot r_{\pi\Sigma})$, which is negligible compared to the measurement errors.

The beam also contains an admixture of 2.2% of K^- . There exist no measurements of Ξ^- production by K^- . From our experiment and from a K^-/π^- beam experi-

Table 3. Ratios of cross sections for inclusive ^Ξ[−] production in different beams: $r_{\pi\Sigma}$: pion beam / Σ^- beam, $r_{\Xi\Sigma}$: Ξ^- beam / Σ^- beam. $f_{\Xi\Xi}$ is the fraction of Ξ^- in our sample produced by Ξ

x_F	$r_{\pi\Sigma}$	$r_{\Xi\Sigma}$	fss
0.05	0.60		
0.15	0.27	1.6	0.02
0.25	0.15	3.0	0.04
0.35	0.11	4.8	0.06
0.45	0.08	9	0.11
0.55	0.05	13	0.15
0.65		19	0.20
0.75		40	0.34
0.85		100	0.57

ment [18] we know that about half as many Λ are produced by K^- as by Σ^- (see [6] for details). Assuming a similar ratio for Ξ^- production by K^- and Σ^- , we expect that about 1% of our Ξ^- sample has been produced by K^- , which results in a negligible effect on our measured polarizations.

The effect of the fraction of 1.3% of Ξ^- contained in the beam is very different. We remind the reader that we have no possibility to tag the Ξ^- in the beam individually. Ξ^- production by Ξ^- shows a very strong leading particle effect [19]. A comparison of Ξ^- production by Ξ^- and by Σ^- is shown in Fig. 8 of [16] and the values in Table 3 are taken from this figure. At low x_F , the ratio $r_{\Xi\Sigma}$ = $\sigma(\varXi^-\to\varXi^-)/\sigma(\varSigma^-\stackrel{\smile}{\to}\varXi^-)$ is about 1, but already at x_F =0.5 production by Ξ^- is enhanced by about a factor $r_{\text{F}}=10$ and at $x_F=0.75$, the mean value of our highest x_F -bin, $r_{\Xi\Sigma}$ =40. These ratios have an overall systematic uncertainty of 20%. Correspondingly, the fraction of Ξ ⁻ produced by Ξ^- in the total Ξ^- sample, $f_{\Xi\Xi}$, rises to $\approx 1/3$ at $x_F = 0.75$ (last column of Table 3).

5 Results

The polarization results for all x_F / p_t bins are listed in Tables 1 and 2. In Fig. 5 we show the polarizations as a function of x_F in fixed intervals of p_t with the mean value of p_t indicated in each plot. At $p_t < 0.4 \,\text{GeV/c}$, the polarization has a tendency to increase with x_F to positive values around 5%. Above $p_t > 0.6$, the polarization changes sign and at $p_t > 0.9$ there is a clear increase of the magnitude with x_F to about -20%.

In Fig. 6 we show the polarizations as a function of p_t in fixed intervals of x_F . Except for the positive values at high x_F and small p_t noted above, the polarizations are negative. Above $x_F \approx 0.3$, we see the magnitude of the polarization rising with p_t with no clear sign of a plateau at high p_t .

The results of this analysis are in good agreement with our earlier result based on 80,000 Ξ^- from our 1991 data [7].

We also looked for a possible dependence of the polarization on the target nuclei. Again we have reduced the

Fig. 5. Polarizations (in $\%$) as a function of x_F for fixed bins in p_t . The mean values of p_t (in GeV/c) are indicated

Fig. 6. Polarizations (in $\%$) as a function of p_t (in GeV/c) for fixed bins in x_F . The mean values of x_F are indicated

number of x_F / p_t bins from 49 to 16. Figure 7(left) shows the distribution of the differences $\Delta P = P(Cu) - P(C)$ normalized to their statistical errors. The mean value of the distribution is -0.22 ± 0.20 and its r.m.s. is 0.78, in agreement with the hypothesis of purely statistical fluctuations. Figure 7(right) shows the polarization differences as a function of x_F . No significant copper/carbon target difference is visible.

6 Discussion

The results presented here constitute a fully two-dimensional study of the x_F and p_t dependence of Ξ^- polarization, extending considerably the x_F / p_t range of earlier Ξ[−] polarization measurements in proton and neutral beams [9–11].

The negative sign of the Ξ^- polarization comes as no surprise. It is expected in the fragmentation/recombination

Fig. 7. Cu/C target comparison: The left-hand plot shows the distribution Δ pol $/\sigma$ for the 16 x_F/p_t samples. There are no overflows. The right-hand plot shows Δ pol (in %) vs x_F . For each value of x_F , four points are given corresponding to $p_t =$ 0.19 (solid) and 0.45, 0.73, 1.15 (open), respectively

Fig. 8. Polarizations in units of % of Λ (squares) and Ξ^- (triangles) produced by protons and of Ξ^- produced by Σ^- (circles), at 5 mrad production angle, as a function of x_F

model of DeGrand and Miettinen [12], though there are no quantitative predictions available. In Fig. 8 we show the polarizations of Λ and Ξ^- produced inclusively by a proton beam of $400 \,\mathrm{GeV/c}$ momentum in a beryllium target [8,9] at a production angle of 5 mrad and our data interpolated to the same production angle. The three data sets are very similar.

The polarization of Ξ^- produced by Ξ^- is unknown, therefore we cannot make any correction for the contribution from Ξ^- interactions. However, in the region 0.4 < $x_F < 0.6$, where the strong negative polarization at large p_t is already fully developed, the fraction of Ξ^- produced by Ξ^- is between 0.1 and 0.2 only, therefore the polarization in this region is essentially due to Ξ^- production by Σ^- . At the highest value $x_F = 0.75$, about 1/3 of the Ξ^- are produced by Ξ^- , and the polarizations due to production by Σ^- may differ significantly from our measured values.

The indication of a positive polarization at high x_F and low p_t is unexpected, but the effect is not very significant and clearly in need of verification.

A fraction of about 15% at low x_F and 20% at high x_F of the Ξ^- sample was produced via the $\Xi^0(1530)$ and $\Xi^-(1530)$ resonances, as determined from the $\Xi^0(1530)$ production cross section measured in our experiment [20]. We cannot, however, extract a sufficiently clean sample of Ξ^- produced in $\Xi^0(1530) \to \Xi^- \pi^+$ decays for a separate polarization analysis, and thus we can make no statement about the effects of Ξ^- production via Ξ^* resonances.

No dependence of the polarization on the target material was found.

Acknowledgements. It is a pleasure to thank J. Zimmer and G. Konorova for their support in setting up and running the experiment. We are also indebted to the staff of the CERN Omega spectrometer group for their help and support, to the CERN EBS group for their work on the hyperon beam line and to the CERN accelerator group for their continuous efforts to provide good and stable beam conditions. We also thank B. Friedgen of TU München for his help with preparing our final data tapes. Yu.A. Alexandrov gratefully acknowledges support by the Deutsche Forschungsgemeinschaft and the Russian Foundation for Basic Research under the contract number 436 RUS 113/465.

References

- 1. J. Félix, Mod. Phys. Lett. A **12**, 363 (1997)
- 2. A. Bravar, Proc. Conf. High energy spin physics, Protvino 1998, 167
- 3. J. Félix, Mod. Phys. Lett. A **14**, 827 (1999)
- 4. J. Soffer, hep-ph/9911373 and Proc. Hyperon 99, Batavia, Illinois, Sept. 1999, p. 121
- 5. V.V. Abramov, hep-ph/0111128 (2001)
- 6. M.I. Adamovich et al., Eur. Phys. J. **C 32**, 221 (2004)
- 7. M.I. Adamovich et al., Z. Physik A **350**, 379 (1995)
- 8. K. Heller et al., Phys. Rev. Lett. **51**, 2025 (1983)
- 9. R. Rameika et al., Phys. Rev. D **33**, 3172 (1986)
- 10. J. Duryea et al., Phys. Rev. Lett. **67**, 1193 (1991)
- 11. D.M. Woods, Phys. Rev. D **54**, 6610 (1996)
- 12. T.A. DeGrand and H.I. Miettinen, Phys. Rev. D **23**, 1227 (1981), D **24**, 2419 (1981)
- 13. Yu.A. Alexandrov et al., Nucl. Instr. Methods A **408**, 359 (1998)
- 14. W. Beusch, CERN/SPSC/77-70
- 15. The Particle Data Group: K. Hagiwara et al., Phys. Rev. ^D **66**, 010001-65 (2002)
- 16. M.I. Adamovich et al., Z. Physik C **76**, 35 (1997)
- 17. S. Barlag et al., Phys. Lett. B **325**, 531 (1994)
- 18. R.T. Edwards et al., Phys. Rev. D **18**, 76 (1978)
- 19. S.F. Biagi et al., Z. Physik C **34**, 187 (1987)
- 20. M.I. Adamovich et al., Eur. Phys. J. C **11**, 271 (1999)